Thermochemical and Structural Investigations on the Systems NaCl/TbCl₃ and NaCl/DyCl₃[†] Hans-Joachim Seifert,* Jürgen Sandrock and Jochen Uebach Inorganic Chemistry, Universität Gh Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany Seifert, H.J., Sandrock, J. and Uebach, J., 1995. Thermochemical and Structural Investigations on the Systems NaCl/TbCl₃ and NaCl/DyCl₃. – Acta Chem. Scand. 49: 653–657 © Acta Chemica Scandinavica 1995. The pseudobinary systems $NaCl/TbCl_3$ and $NaCl/DyCl_3$ were investigated by DTA and X-ray diffraction. Three incongruently melting compounds exist in both systems: $NaLn_2Cl_7$ (KDy_2Cl_7 structure), $NaLnCl_4$ ($NaGdCl_4$ structure) and dimorphic Na_3LnCl_6 . Additionally, a compound Na_2TbCl_5 (K_2PrCl_5 structure) was found in the system with terbium chloride. The high-temperature compounds $H-Na_3LnCl_6$ have the cryolite structure, the low-temperature compounds $L-Na_3LnCl_6$ crystallize in the 'stuffed LiSbF₆'-type. The analogous Eu- and Gd-compounds are stable only at higher temperature in the cryolite structure, the 'LiSbF₆' phases can be obtained metastable by quenching. By solution calorimetry and EMF vs. T measurements in galvanic cells for solid electrolytes the enthalpies ΔH ° and free enthalpies ΔG ° for the formation of the ternary chlorides from the compounds adjacent in the systems were determined. Most stable are the $NaLnCl_4$ compounds. In the literature some partial aspects of the two systems NaCl/TbCl₃¹ and NaCl/DyCl₃² are described. These phase diagrams were investigated in 1965–66. Two incongruently melting compounds were found, respectively: Na₃LnCl₆ and NaTb₂Cl₇/NaDy₃Cl₁₀. Structural information about the 3:1 compounds, based on single-crystal X-ray diffraction, were given by Meyer.³ According to his findings Na₃TbCl₆ has a trigonal unit cell like Na₃EuCl₆ and Na₃GdCl₆ at ambient temperature (stuffed LiSbF₆-type), while Na₃DyCl₆ is isotypic to Na₃ErCl₆ (monoclinic cryolite structure). We ourselves investigated the systems NaCl/EuCl₃⁴ and NaCl/GdCl₃⁵ and found that both systems contain three compounds: NaLnCl₄, Na₂LnCl₅ and Na₃LnCl₆. In the system with GdCl₃ a fourth compound, NaGd₂Cl₇, exists only in a small temperature range (393–422 °C). Na₃EuCl₆ is stable above 388 °C, but could be quenched to a phase with the stuffed LiSbF₆ structure. Na₃GdCl₆ exhibits two modifications: above 265 °C a stable phase with the cryolite structure exists. On cooling it to ambient temperature the trigonal structure is formed; however, it is a metastable phase which decomposes exothermically (!) at ca. 210 °C to a mixture of NaCl and Na₂GdCl₅. In this paper the results of a reinvestigation of the systems NaCl/TbCl₃ and NaCl/DyCl₃ are given. Two issues should be elucidated: (1) Do the compounds NaLnCl₄ and Na₂LnCl₅ exist additionally to the findings of Korshunov and Drobot? ^{1,2} (2) What are the structural features of the compounds Na₃LnCl₆, and which correlations to the analogous Eu- and Gd-compounds exist? ## Experimental TbCl₃ and DyCl₃ were prepared by dehydrating their hexahydrates (99.9% Fa. Heraeus, Hanau) in an HCl stream. Precautions must be taken into account to avoid the formation of oxychlorides (details are given in papers about the systems $ACl/TbCl_3^6$ and $ACl/DyCl_3^7$ with A = Cs, Rb, K). NaCl was dried by heating to 500 °C. The samples for DTA were prepared by melting adequate mixtures (ca. 0.5 g) in vacuum-sealed quartz ampoules with a gas flame. The melt was homogenized by shaking and solidified by rapid cooling. The ampoules thus prepared could be used directly or after annealing at selected temperatures. The home-built devices for DTA and solution calorimetry have been described previously. For the determination of the (Gibbs) enthalpies of formation of each compound from NaCl and the next, LnCl₃-richer, neighbour compound in the system, a galvanic cell for solid electrolytes was used. The set-up for the LnCl₃-richest compound (Na_{0.5}LnCl_{3.5}) was: (graphite + Cl₂)|NaCl|Na⁺ conducting diaphragm|LnCl₃ (+Na_{0.5}LnCl_{3.5}) | (graphite + Cl₂). The diaphragm was prepared according to a formula developed by Østvold in [†] Presented at the International Harald Øye Symposium, Trondheim, Norway, February 2-3, 1995. ^{*} To whom correspondence should be addressed. Trondheim.¹⁰ It could be used for temperatures higher than ca. 280 °C. A detailed description of the whole cell is given in Ref. 11. #### Results Phase diagrams and crystal structures. Fig. 1 illustrates the results of the DTA measurements. The lattice parameters of the existing compounds are given in Table 1. As described earlier, both binary lanthanide chlorides reveal a phase transition near 350 °C: TbCl₃ 6 from the UCl₃ to the PuBr₃ structure, DyCl₃⁷ from the PuBr₃ to the AlCl₃ structure. The findings of Korshunov and Drobot 1,2 concerning the compounds NaLn₂Cl₇ and NaDy₂Cl₇ could be confirmed. They crystallize with the monoclinic KDy₂Cl₇ structure, ¹² the coordination number (CN) of the Ln³⁺ ions to chloride is 7. The compounds Na₃LnCl₆ have well reversible phase transitions at 153 °C (Na₃TbCl₆) and ca. 120 °C (Na₃DyCl₆). This is demonstrated in Fig. 2: a sample of Na₃TbCl₆ was measured in several cycles at ambient temperature and at ca. 160 °C. H-Na₃LnCl₆ has the monoclinic cryolite structure, L-Na₃LnCl₆ the trigonal 'stuffed LiSbF₆'-structure. In both structure types the Ln3 ions have octahedral surroundings (CN 6). Additional to the older results, incongruently melting compounds NaLnCl₄ were found, which are isotypic to NaGdCl₄ 13 (triclinic space group $P\bar{1}$). The CN of Ln³⁺ is 7. The compound Na₂TbCl₅ could not be detected by DTA alone, because the formation during cooling is suppressed in the timescale of DTA (2 K min⁻¹) by kinetic hindrance. Evidence for this was provided by EMF mea- surements (Fig. 3), where the timescale is much greater: the EMF vs. T curves were measured in steps of 7 K; the time for each step was ca. 8 h. After having annealed a 2:1 sample for two weeks at ca. 300 °C, an endothermic effect in the heating curve was found at 345 °C. EMF measurements and annealing experiments in the system NaCl/DyCl₃ gave no evidence for the existence of an analogous compound. Na₂TbCl₅ has the orthorhombic K_2PrCl_5/Y_2HfS_5 structure, ¹⁴ the CN for Tb³⁺ is 7. Solution calorimetry. The isoperibolic solution calorimeter had a volume of 1.3 l. Samples of 3–6 g thus yielded virtually ideal solutions (dissolution ratio 1:3500 mol). The $\Delta_{\rm sol}H^{\circ}_{298}$ -values in Table 2 are always the mean of three measurements. The range of error was \pm 0.5 kJ mol $^{-1}$. The enthalpies $\Delta_{\rm f}H^{\circ}_{298}$ for the formation from NaCl and LnCl₃ were calculated with the equation $$\Delta_{f}H^{\circ} = \{ n\Delta_{sol}H^{\circ}(NaCl) + \Delta_{sol}H^{\circ}(LnCl_{3}) \}$$ $$-\Delta_{sol}H^{\circ}(A_{n}LnCl_{3+n})$$ The solution enthalpies for the compounds L-TbCl₃ and L-DyCl₃ are in good agreement with values from the literature ¹⁵ (-186.9 to -192.5 for TbCl₃, ca. 198 for DyCl₃). The synproportionation enthalpies $\Delta_{\rm syn}H^{\circ}$ are exothermic only for the compounds NaLnCl₄; they are virtually zero for the formation of Na₂TbCl₅ from Na₃TbCl₆ and NaTbCl₄ and of Na₃DyCl₆ from NaCl and NaDyCl₄. EMF measurements. EMF values were measured for the formation of each compound from NaCl and the adjacent LnCl₃-richer compound in a temperature range ca. 300– Fig. 1. Phase diagrams of the systems NaCl/TbCl3 and NaCl/DyCl3. Table 1. Unit-cell parameters of ternary chlorides $Na_n LnCl_{3+n}$ in pm. | | | | . • | | | | |--|---|---|--|---|---|--| | NaLn ₂ Cl ₇ : KD | y ₂ Cl ₇ -type (monoclir | nic; <i>P</i> 2 ₁ / <i>c</i>) | | | | | | NaTb ₂ Cl ₇ :
NaDy ₂ Cl ₇ : | | a=667.2; b=1277.8;
a=671.5; b=1285.2; | | β=90°
β=90° | | | | <i>NaLnCl₄:</i> NaG | dCl ₄ -type (triclinic; | P 1) | | | | | | NaTbCl ₄ :
NaDyCl ₄ : | a=700.6;
a=699.1; | b=672.3;
b=666.7; | c = 662.1;
c = 662.7; | $\alpha = 100.2^{\circ}$ $\beta = 91.2^{\circ}$ $\alpha = 100.3^{\circ}$ $\beta = 91.0^{\circ}$ | | $\gamma = 89.0^{\circ}$
$\gamma = 89.7^{\circ}$ | | Na ₂ TbCl ₅ : K ₂ F | PrCl ₅ /Y ₂ HfS ₅ -type(| orthorhombic; <i>Pnma</i> |) | | | | | | a= 1201.0; | b=827.4; | c=764.3; | | | | | H-Na ₃ LnCl ₆ : c | ryolite-type (monoc | linic; <i>P</i> 2 ₁ / <i>n</i>) | | | | | | Na ₃ EuCl ₆ :
Na ₃ GdCl ₆ :
Na ₃ TbCl ₆ :
Na ₃ DyCl ₆ : | a=700.6;
a=700.5;
a=689.1;
a=687.9; | b=735.9;
b=727.6; | c=1035.3;
c=1035.6;
c=1019.3;
c=1017.5; | | (Meyer, 1987)
(Meyer, 1987)
(Meyer, 1987) | | | L-Na ₃ LnCl ₆ : s | tuffed LiSbF ₆ -type (| trigonal; R3) | | | | | | Na ₃ EuCl ₆ :
Na ₃ GdCl ₆ :
Na ₃ TbCl ₆ :
Na ₃ DyCl ₆ : | a=701.8;
a=700.7;
a=698.7;
a=697.4; | | c= 1882.5;
c= 1879.1;
c= 1872.5;
c= 1868.7; | | (Meyer, 1984)
(Meyer, 1984) | | 400 °C. In this range the dependence of EMF on T was linear. Thus, the equations for the regression lines could be transformed by multiplication with -nF to the Gibbs–Helmholtz equation $\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$. By means of thermodynamic cycles these functions were transformed to those for the reactions $nACl + LnCl_3 = A_nLnCl_{3+n}$, denoted $\Delta_f G^\circ$, $\Delta_f H^\circ$ and $\Delta_f S^\circ$, and further to the free enthalpies of synproportionation, $\Delta_S G^\circ$, from the two neighbouring compounds. For high-temperature modifications the temperatures of formation (decomposition) were calculated by the condition $\Delta_S G^\circ = 0$. As an example a description for the evaluation of the measurements concerning the reaction 2NaCl+ $NaTbCl_4 = H-Na_3TbCl_6$ is given. According to Fig. 1 it occurs in the temperature range 345-406 °C. Two cycles gave the regression lines: EMF/mV = -36.11 + 0.1372 T/K EMF/mV = -36.60 + 0.1413 T/K The mean regression line is EMF/mV = -36.36 + 0.1393 T/K. By multiplication with -nF (n = 2) the Gibbs-Helmholtz equation $\Delta_r G^{\circ}/kJ$ mol⁻¹ = 7.0 – 0.0269 T/K was given [reaction (5) in Fig. 3]. In the following the Gibbs-Helmholtz equations for Fig. 2. X-Ray patterns for Na_3TbCl_6 at 20 and 160 $^{\circ}$ C. Table 2. Enthalpy values (in kJ mol⁻¹) from solution calorimetry.^a | | | Tb | | $\Delta_{\sf syn} H^\circ$ | | Dy | $\Delta_{syn} H^\circ$ | | |--------------------------------------|---|--------------------|------|----------------------------|-------|---------|------------------------|------| | NaCl | $\Delta_{sol} \mathcal{H}^{\circ}$ | +4.5 | | | | +4.5 | | | | No. 1 - Ot | $_{ig(}\Delta_{sol}\mathcal{H}^{\circ}$ | - 179.1 | +1.6 | 1.4.0 | | - 181.7 | 1.0 | | | Na ₃ LnCl ₆ | $\left\{egin{array}{c} \Delta_{sol} H^{\circ} \ \Delta_{f} H^{\circ} \end{array} ight.$ | +3.8 | | | - 1.9 | ±Ο | | | | No. 1 - Cl | $\left\{egin{array}{c} \Delta_{sol} H^{\circ} \ \Delta_{f} H^{\circ} \end{array} ight.$ | -182.0 | | | -0.1 | | | | | Na ₂ LnCl ₅ | $\{\Delta_{f}H^{\circ}$ | +2.2 | | | | | | | | Nat -Cl | $\int \Delta_{ m sol} H^{\circ}$ | - 185.0 | 4.4 | | | - 190.7 | | 4.7 | | NaLnCl ₄ | $\left\{egin{array}{l} \Delta_{sol} H^{\circ} \ \Delta_{f} H^{\circ} \end{array} ight.$ | +0.7 | -4.4 | | | - 1.9 | | -4.7 | | 0.5 Not - 0 | $\int \Delta_{ m sol} H^{\circ}$ | - 193.1 | | | 100 | - 198.8 | +4.9 | | | 0.5 NaLn ₂ C ₇ | $\left\{egin{array}{l} \Delta_{ m sol} H^{\circ} \ \Delta_{ m f} H^{\circ} \end{array} ight.$ | +6.6 | | | +6.2 | +4.0 | | | | L-LnCl ₃ | $\Delta_{sol} \mathcal{H}^{\circ}$ | - 188.8 | | | | - 197.1 | | | $[^]a\Delta_{\rm sol}H^\circ=$ solution enthalpy; $\Delta_{\rm f}H^\circ=$ formation enthalpy from nNaCl and LnCl $_3$; $\Delta_{\rm syn}H^\circ=$ enthalpy of synproportionation from the neighboured compounds. the reactions in the cell and for the formation from ACl and LnCl₃ are listed, together with the temperature ranges of the measurements. The range of error was smaller than ± 1 kJ mol⁻¹ for the energy values and ± 0.8 J K⁻¹ mol⁻¹ for the entropies. System NaCl/TbCl3 0.5 NaCl + H-TbCl₃ = Na_{0.5}TbCl_{3.5} (290-400 °C) (1) $$\Delta_{\rm r}G^{\rm o}/{\rm kJ~mol^{-1}} = 6.1 - 0.0213~T/{\rm K}$$ id. $\Delta_{\rm f}G^{\rm o}$ $$\Delta_{\rm r}G^{\,\circ}/{\rm kJ~mol}^{-1} = -4.9$$ $\Delta_{\rm f}G^{\,\circ}/{\rm kJ~mol}^{-1} = 1.2 - 0.0213~T/{\rm K}$ $$NaCl + NaTbCl_4 = Na_2TbCl_5$$ (290-320 °C) (3) Fig. 3. EMF vs. T curves for the reactions (3)–(5) in the system NaCl/TbCl $_3$. $$\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = -1.6 - 0.0051 \ T/K$$ $\Delta_f G^{\circ}/kJ \text{ mol}^{-1} = -0.4 - 0.0264 \ T/K$ $$NaCl + Na_2TbCl_5 = H-Na_3TbCl_6$$ (290-330 °C) (4) $$\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = 7.2 - 0.0195 \ T/K$$ $\Delta_f G^{\circ}/kJ \text{ mol}^{-1} = 6.8 - 0.0459 \ T/K$ $$2 \text{ NaCl} + \text{NaTbCl}_4 = \text{H-Na}_3\text{TbCl}_6$$ (330–400 °C) (5) $$\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = 7.0 - 0.0269 \ T/K$$ $\Delta_f G^{\circ}/kJ \text{ mol}^{-1} = 8.2 - 0.0482 \ T/K$ The $\Delta_f G^{\circ}$ -values from reactions (4) and (5) should be identical; the difference of 1.4 kJ mol⁻¹ for $\Delta_f H^{\circ}$ and 2.3 J K⁻¹ mol⁻¹ for $\Delta_f S^{\circ}$ is caused by the uncertainty of the measurements. The temperature of decomposition for Na₂TbCl₅ is given by the conditions $\Delta_r G^{\circ}$ (3) = $\Delta_r G^{\circ}$ (5) and $\Delta_r G^{\circ}$ (4) = $\Delta_r G^{\circ}$ (5), respectively. The values are 615 and 611 K, which gives a mean of 613 K (340 °C). As expected from kinetic reasons, ¹⁶ it is somewhat lower than the value of 345 °C found from DTA heating curves. System NaCl/DyCl3 $$0.5 \text{ NaCl} + \text{H-DyCl}_3 = \text{Na}_{0.5}\text{DyCl}_{3.5} (300-400 \,^{\circ}\text{C})$$ (1) $$\Delta_r G^{\circ}/kJ \mod^{-1} = -6.4 - 0.0025 \ T/K$$ id. $\Delta_r G^{\circ}$ $$\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = -5.2$$ $\Delta_f G^{\circ}/kJ \text{ mol}^{-1} = -11.6 - 0.0025 T/K$ $$2NaCl + NaDyCl_4 = H-Na_3DyCl_6$$ (310-400 °C) (3) $$\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = 3.6 - 0.0257 \ T/K$$ $\Delta_f G^{\circ}/kJ \text{ mol}^{-1} = 8.0 - 0.0282 \ T/K$ It must be pointed out that the EMF measurements relate to the modifications that are stable in the applied temperature range. Thus, $\Delta_f H^\circ$ -values from EMFs cannot be compared with the values from solution calorimetry found at ambient temperature. For that they had to be converted with the transformation enthalpies L-LnCl₃ to H-LnCl₃ and L-Na₃LnCl₆ to H-Na₃LnCl₆. These values are known with too poor a quality to justify such a conversion. The same considerations are valid for the calculation of the stability ranges from synproportionation enthalpies not very different from zero. ### Discussion Our hitherto existing results on systems NaCl/LnCl₃ have yielded the following general conclusions: The systems from LaCl₃ to SmCl₃ are dominated by a more or less entended mixed crystal region between LnCl₃ and Na₃Ln₅Cl₁₈. The crystal structures of these phases were solved by single crystal measurements on $K_3La_5Cl_{18}$. The crystal measurements on $K_3La_5Cl_{18}$. Compounds Na_2LnCl_5 , crystallizing with the K_2PrCl_5 structure, were found in the systems from Sm to Tb, not in the system $NaCl/DyCl_3$. The compounds with Ln = Sm, Eu, Gd melt incongruently at ca. 430 °C, Na_2TbCl_5 decomposes in the solid state at 340 °C. The formation enthalpies $\Delta_f H^\circ$ (formation from 2NaCl and LnCl₃) are endothermic. Gibbs enthalpies $\Delta_r G^\circ$ for the reactions NaCl + Na₃Sm₅Cl₁₈¹⁸ and NaCl + L-NaEuCl₄⁴ yielded decomposition temperatures of $\geq 150\,^\circ\text{C}$ and 69 °C, respectively. For Na₂GdCl₅ no EMF measurements with L-NaGdCl₄ could be done. However, from solution calorimetry the enthalpy for the reaction NaCl + L-NaGdCl₄ = Na₂GdCl₅ is known. It is 3.0 kJ mol⁻¹ less endothermic than for Na₂EuCl₅ (corrected value from Ref. 4 = 5.7 kJ mol⁻¹). Thus the range of stability should stretch to lower temperatures than for Na₂EuCl₅; the same is true for Na₂TbCl₅, with a $\Delta_{\rm syn} H^\circ$ -value not significantly different from zero (Table 2). Beginning with NaEuCl₄ these 1:1 compounds are the most stable in the systems. That is, the $\Delta_{\rm f}H^{\circ}$ -values are identical with $\Delta_{\rm syn}H^{\circ}$. From EMF measurements on L-NaEuCl₄ $\Delta_{\rm f}G^{\circ}/{\rm kJ}$ mol⁻¹ = 5.1 – 0.0179 $T/{\rm K}$ was obtained, which gives 285 K (12 °C) as the lowest temperature of stability. $\Delta_{\rm f}H^{\circ}$ -values for the other compounds are 5.4 kJ mol⁻¹ for NaGdCl₄, 0.7 for NaTbCl₄ and – 1.9 for NaDyCl₄. The last compound must be stable down to 0 K. In the system NaCl/GdCl₃ a compound NaGd₂Cl₇ exists only in a small temperature range (393–422 °C). For the incongruently melting compounds NaTb₂Cl₇ and NaDy₂Cl₇ no decomposition could be detected by DTA. However, the relatively strong endothermic $\Delta_{\rm syn}H^{\circ}$ -values in Table 2 indicate that the compounds can be stable only at temperatures where the loss of enthalpy is compensated by a sufficiently high gain in entropy the ($T\Delta S$ -term). Compounds Na₃TbCl₆ and Na₃DyCl₆ exist at temperatures higher than ca. 100 °C with the cryolite structure. Below this temperature they transform reversibly to the hexagonal stuffed 'LiSbF₆'-type. Na₃GdCl₆⁵ is stable only above 265 °C. It can be quenched to a metastable 'LiSbF₆' phase, which decomposes exothermally when heated to ca. 210 °C. With this knowledge we had to correct our previous interpretation for the compound Na₃EuCl₆. It is stable above 388 °C. However, it does not crystallize with the hexagonal structure, which must be attached to a metastable phase, formed by quenching. This phase decomposes at ca. 180 °C to NaCl and Na₂EuCl₅. The structure of the stable high-temperature phase was determined by means of high-temperature Guinier photos; the cell parameters are given in Table 1. Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. #### References - Korshunov, B. G., Drobot, D. V., Borodulenko, G. P. and Galchenko, I. E. Zh. Neorg. Khim. 11 (1966) 1013. - Korshunov, B. G. and Drobot, D. V. Zh. Neorg. Khim. 10 (1965) 939. - Meyer, G., Ax, P., Schleid, T. and Irmler, M. Z. Anorg. Allg. Chem. 554 (1987) 25. - Seifert, H. J. and Sandrock, J. Z. Anorg. Allg. Chem. 587 (1990) 110. - Seifert, H. J., Sandrock J. and Thiel, G. Z. Anorg. Allg. Chem. 598/599 (1991) 307. - Mitra, S., Uebach, J. and Seifert, H. J. J. Solid State Chem. 115 (1995) 484. - Seifert, H. J. and Krämer, R. Z. Anorg. Allg. Chem. 620 (1994) 1543. - 8. Seifert, H. J. and Thiel, G. Thermochim. Acta 20 (1977) 244. - 9. Thiel, G. and Seifert, H. J. Thermochim. Acta 22 (1978) 363. - Ostvold, T. A., Thesis, University of Trondheim, Norway 1971. - Seifert, H. J. and Thiel, G. J. Chem. Thermodyn. 14 (1982) 1159. - Meyer, G., Ax, P., Cromm, A. and Linzmeier, H. J. Less-Common Met. 98 (1984) 323. - Schleid, T. and Meyer, G. Z. Anorg. Allg. Chem. 590 (1990) 103. - Jeitschko, W. and Donohue, P. C. Acta Crystallogr., Sect. B31 (1975) 1890; Meyer, G., Gaebell, H. C. and Hoppe, R. J. Less-Common Met. 93 (1983) 347. - 15. Burgess, J. and Kijowski, J. Adv. Inorg. Chem. Radiochem. 24 (1981) 57. - 16. Seifert, H. J. J. Therm. Anal. 33 (1988) 147. - Seifert, H. J., Fink, H. and Thiel, G. J. Less-Common Met. 110 (1985) 139. - 18. Thiel, G. and Seifert, H. J. Thermochim Acta 133 (1988) 275. Received March 1, 1995.